If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x-24=0
a = 1; b = 16; c = -24;
Δ = b2-4ac
Δ = 162-4·1·(-24)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{22}}{2*1}=\frac{-16-4\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{22}}{2*1}=\frac{-16+4\sqrt{22}}{2} $
| x^+3x=-5 | | (2(4y-15)/5)=2y-8 | | 3.9/x=6.5 | | 9(x+8)+12=8(×+8)+10 | | 2(t=5)4t-7(t=3) | | -8y-(-20y)-(-16y)+(-9)=19 | | x2+2x=80 | | x/3=75 | | |2x-1|=-9 | | .25b+9.99=113.74 | | y=-1.125-8 | | Y=7-3x2 | | |2x-11=-9 | | 200m−100m+48500=50250−150m | | 6(y+3)+2=38 | | -23=-x/8 | | 13c+2=-18.5 | | .89+a=92.99 | | y=(.125)(-9)-8 | | 15=c/3-2/1 | | 3/4x=9-18x | | 2x+4x-8+3=18 | | -15=-5m+5 | | 4y+1=-3+22 | | -8(4n+9)=10n | | 6/7x-23/35=-1/7x-4/5 | | 12y-8y=12 | | -4(2n-6)=14n | | o+P=15.05 | | x^-30=x | | -373=-7(7a-5)-2a | | y=-0.375-8 |